

Introduction

- A binary mixed system composed of non-Brownian, repulsive particles $(d \sim 4 \ \mu m)$ and attractive colloidal particles $(d \sim 0.5 \ \mu m)$
- Repulsive (charge repulsion) particles shear thickening Attractive (hydrophobic attraction) particles – colloidal gel background
- Stöber silica particles for tuneable surface chemistry and index-matchability

Large Particles: Shear Thickening

- Silica particles ($d \sim 4 \ \mu m$) in water/glycerol mixture Surface charge: electrostatic repulsion
- Transition from frictionless → frictional contacts drives viscosity increase [1-3]
- Onset stress keeps constant when varying volume fraction $\boldsymbol{\varphi}$

Mixed System

- Mixed system : $\phi_{attractive} = 10\%$; $\phi_{repulsive} = 35\%$ Colloidal gel : $\phi_{attractive} = 10\%$
- Highly dependent on shear history (rheopexy?)

Liquid-like

Solid-like

High-shear mixing arrests suspension

Shaking by vortex (5s)

Preshear Rate (s⁻¹)

Higher preshear \rightarrow higher G'

Small Particles: Colloidal Gel

- Colloidal silica particles ($d \sim 0.5 \,\mu m$)
- Trimethylsilyl (TMS) coating induces hydrophobic attraction
- Attractive interaction \rightarrow Colloidal gel \rightarrow Yield stress

TMS coating by hexamethyldisilazane (HMDS)

Percolated gel network (confocal 2D)

Oscillation Strain (%) A modulus peak at large strain

High σ_{yield} after high preshear Reproduce same curve after first ramp-up

Rheo-imaging reveals structure change at moderate shear Gel collapse Compact clusters

In-situ rheo-imaging (insert is colloidal gel without large particles).

Conclusions and Future Work

- The addition of large particles produces compact clusters at moderate shear
 - Related to shear thickening? Same collapse in oscillatory shear?

• Formation of compact clusters makes it history-dependent