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Introduction
Suspensions, such as corn starch in water, slurries or

drilling mud, are systems composed of non-diffusive

solid particles suspended in a fluid.

At dense particle concentrations (≳38% by volume for

corn starch [1], ≳ 56% for hard spheres [2]),

suspensions exhibit rapid, discontinuous increases in

stress response to deformations above a critical size,

allowing one to run – but not walk – across a bath of

concentrated corn starch in water.

Critical Stress Picture
Recently [2,3], a picture has emerged in which this

discontinuous jump in stress response arises due to a

transition from a frictionless to a frictional regime in the

interactions between particles, when stresses are

above a critical stress.

This critical stress is set by stabilising interparticle

forces, such as charge or steric stabilisation.

S-shaped Constitutive Curve
Suspensions of highly frictional particles jam into a solid

at lower volume fractions 𝜙𝐽
𝜇

than the jamming fraction

𝜙𝐽
0 of suspensions of frictionless particles. Wyart and

Cates [3] showed that interpolating the jamming fraction

𝜙𝐽 in the viscosity law

𝜂 = 𝜂0 𝜙𝐽 − 𝜙
−𝜈

between 𝜙𝐽
0 and 𝜙𝐽

𝜇
as the proportion of interactions

involving friction is increased leads to an S-shaped

constitutive curve (c.f. fig 3) of steady-state bulk stress

versus shear rate for dense enough suspensions,

providing one explanation for a discontinuous increase

in bulk stress with increasing shear rate.

Stress-controlled systems with S-shaped constitutive

curves are typically expected to exhibit flow instabilities

leading to heterogeneity along the vorticity direction

when 𝑑𝜎/𝑑 ሶ𝛾 < 0 [4], but non-Brownian suspensions are

unable to support steady, static bands [5]. Experimental

evidence of these instabilities exists [5,6], but until now

no particle simulations found banding.
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Vorticity Instability Model
To probe this inconsistency, a constitutive model for the 

dynamics of suspensions along the vorticity axis was 

developed:

𝜕𝑡𝜙 + 𝜕𝑧 𝑣 𝜙 = 0

𝜕𝑡𝑓 = −
ሶ𝛾

𝛾0
𝑓 − 𝑓∗ 𝜎

𝜎 = 𝜂0 𝜙𝐽 𝑓 − 𝜙
−2

ሶ𝛾

𝜕𝑧𝜎 + 𝜙𝛼 𝑣 − ҧ𝑣 = 0
where 𝑓∗ 𝜎 = 𝑒−𝜎𝑐/𝜎 , 𝜙𝐽 𝑓 = 𝑓𝜙𝐽

𝑅𝐿𝑃 + 1 − 𝑓 𝜙𝐽
𝑅𝐶𝑃

and ሶ𝛾 =
ഥ𝜎

ഥ𝜂
.

Results

mass conservation

Wyart-Cates

force balance
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Future Directions
We could try using different boundary conditions to

connect with experiments, or modifying the Wyart-Cates

terms in search of better fits to particle simulations.

For sufficiently large 

systems, our model 

predicts instabilities 

leading to two long-

time behaviours:

travelling bands (TB) 

(fig 1., left) and 

standing bands (SB) 

(fig 1., right).
We find TB in particle 

simulations (fig 2., black) 

with a large vorticity axis, 

confirming our model’s 

prediction, although the TB 

profiles differ qualitatively

from the TB generated by 

our model (fig 2., colour).
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(fig. 3)

Inhomogeneous flow leads 

to flow curves that deviate 

from the homogeneous 

constitutive curve (fig. 3). 


